
Robotic Control of a Satellite orbiting a Planet
Computational methods and optimization (FM 216)

Project summary

This project studies control strategies for a robotic system managing the orbit
of a satellite on an elliptical trajectory around a planet. The first part of the
project focuses on numerically solving Kepler’s equation to determine the satellite’s
position, using root-finding techniques— fixed-point iteration, Newton’s and Secant
methods—and analyzing their convergence. The second part explores optimization
techniques to minimize the mass of a rocket, employed for launching the satellite,
under a constraint on its final velocity. Further, the robot is also tasked with setting
optimal control configurations of the satellite to minimize its fuel consumption.
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1 Project part - I

1.1 Introduction : Robotic control of a satellite

In modern space missions, autonomous robotic systems play a crucial role in controlling
and managing satellites. The physics of a satellite orbiting a planet follows the principles
of planetary motion. In this project, we simulate a scenario where a robot is tasked with
maintaining and modifying the orbit of a satellite. The satellite’s motion is governed by
Kepler’s equation, that cannot be solved by analytical methods. Thus the robot must
have an on-board computing device that relies on numerical methods to predict the satel-
lite’s real-time position and an automatic control apparatus to apply corrective actions
that achieves specific orbital characteristics.

Kepler’s equation describes the relationship between the mean anomaly (θM), the
eccentric anomaly (θE), and the orbital eccentricity (e) of the satellite. The equation is
given by

θM = θE − e sin θE, (1)

where θM ∈ [0, 2π], θE ∈ [0, 2π], e ∈ [0, 1).

1.1.1 Parameters of Kepler’s equation

Let’s understand some fundamental concepts related to the orbit of a satellite around a
planet. We’ll skip the detailed derivation of the Kepler’s equation here -interested readers
can refer Casselman 2018.

1. Orbit: It refers to the path of a satellite around a planet. This path is considered
to be an ellipse as shown in Fig 1. The planet is located at one of the foci of the
ellipse.

Figure 1: Mean Anomaly, Eccentric Anomaly, True Anomaly

2. True Anomaly (θ): The angle between the direction of perihelion (A) with respect
to the centre (C) and the current position of the planet (P ) as seen from the focus
(S) of the ellipse.
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3. Mean Anomaly (θM): It represents the fraction of the orbit’s period that has
elapsed since the last perihelion. It increases linearly with time from 0 to 2π as the
planet completes its orbit. It is given by:

θM =
2π

T
(t),

where T is the orbital period and t is the time elapsed since passage through the
last perihelion.

4. Eccentric Anomaly (θE): The eccentric anomaly is an angular parameter that
helps to describe the position of a satellite along its orbit. It is related to the mean
anomaly through the Kepler’s equation.

5. Eccentricity (e): A measure of how much the orbit deviates from a circular shape.
For a perfect circle, e = 0. For highly elongated ellipses, e approaches 1.

You may also refer to this animation for an immersive understanding of the parame-
ters involved in the Kepler’s equation.

Equation 1 cannot be solved analytically. Hence, we rely on numerical techniques to
compute θE for a given θM and e.

The position of the satellite is obtained in terms of polar coordinates (r, θ), where r
represents the radial coordinate of the satellite and θ represents the true anomaly. Once
θE is computed, equation 2 can be used to calculate θ and equation 3 to compute the
radial position r.

θ = 2arctan

(√
1 + e

1− e
tan

θE
2

)
, (2)

r = a(1− e cos θE), (3)

where a is the semi-major axis of the orbit. Based on the calculated values of r and
θ, the robot can adjust the satellite’s thrust and velocity vectors to correct any devia-
tions from the desired orbit. This involves continuously solving Kepler’s equation as the
satellite progresses in its orbit.

1.2 Brief overview of numerical techniques

For this project, we will utilize three numerical methods for solving equations. Each
method has its own approach and convergence properties, making them suitable for dif-
ferent types of problems.

1.2.1 Fixed-point iteration

The fixed-point iteration method solves equations of the form x = g(x) by repeatedly
applying the update rule

xn+1 = g(xn).

This process converges to a unique fixed point if the continuous function g(x) in [a, b] is
differentiable for all x ∈ [a, b] with |g′(x)| ≤ k < 1, for some positive constant k. For
pseudocode, refer to Appendix A.1.
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1.2.2 Newton’s method

Newton’s method is one of the most widely used techniques for finding roots of a function
f(x). The method uses the update rule

xn+1 = xn −
f(xn)

f ′(xn)
.

This method typically converges rapidly when the initial guess is close to the true root.
However, it requires the calculation of the derivative of f(x) which can be computationally
expensive. For pseudocode, refer to Appendix A.2.

1.2.3 Secant Method

The secant method is a derivative-free alternative to Newton’s method. It approximates
the derivative using the finite difference between two successive iterates as follows.

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
.

This method is useful when the derivative is difficult to compute. For pseudocode, refer
to Appendix A.3. For further theoretical details refer Burden et al. 2011.

1.3 Problem statements

1. Well-posedness of the problem: First, we must ensure that the problem we are
trying to solve is well-posed. Using appropriate plots and reasoning, demonstrate
that for any allowed value of θM , there is a unique value of θE that satisfies equation
1 for all elliptical orbits, i.e., for 0 ≤ e < 1.

2. Fixed-point iteration: Convert the root-finding problem in equation 1 into an
appropriate fixed-point problem, g(θE) = θE.

(a) For nearly circular orbits (i.e., e close to 0) and θM = 1, use the fixed-point
iteration method, with the initial guess θE0 = θM , to determine the fixed
points. (set tolerance = 10−9).

(b) For e close to 1, show that convergence to the fixed point is slower than in the
case where e is close to 0. Explain why this occurs and suggest modifications
that could accelerate convergence to the fixed point.

3. Newton-Raphson and secant methods: Apply the Newton-Raphson and secant
methods as root-finding techniques to solve equation 1 for e = 0.9 and θM = 1. (set
tolerance = 10−9).

(a) Perform a comparative convergence analysis of the three techniques (fixed-
point iteration, Newton-Raphson, and secant methods) you used to solve equa-
tion 1. Identify the most efficient method, particularly for varying values of
the eccentricity e.

4. Orbital positions and robotic control of the satellite: A robot-guided satel-
lite moves in an elliptical orbit with an eccentricity e = 0.8 and a semi-major axis
a = 2km. The time period of the orbital motion is T = 100 seconds.
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(a) Discretize the time interval from 0 to T into 20 equally sized intervals and
calculate the position of the satellite (r, θ) at each of these time intervals.

(b) Plot the elliptical trajectory of the satellite.

(c) The control station expects the robot to place the satellite at specific positions
at certain times. The table below shows the expected positions at key times
T/4, T/2, 3T/4, and T .

Time (s) Expected r (km) Expected θ (radians)
T/4 2.95696778 2.81033528
T/2 3.6 3.14159265
3T/4 2.95696778 3.47285002
T 0.4 0

Table 1: Expected satellite positions at key times.

Compare the positions (r, θ) obtained from the robotic control with the expected
positions provided in the table. Calculate the error in both r and θ at times T/4,
T/2, 3T/4, and T .

5. Generalized Kepler’s equation: The original Kepler’s equation can be per-
turbed due to gravitational forces and the satellite’s inclination relative to the or-
bital plane (López et al. 2018). This leads to the generalized form of the equation,

θM = θE − e sin θE +
ϵ∗

(1− e2)3
[
2
(
e2 + 2

)
θE − 8e sin θE + e2 sin 2θE

]
, (4)

where ϵ∗ is a dimensionless parameter influenced by gravity and inclination. Assume
ϵ∗ = 0.0003.

(a) Using appropriate plots and reasoning, demonstrate that for some specific
allowed values of θM , there are multiple values of θE that satisfy equation 4
for all elliptical orbits, i.e., for 0 ≤ e < 1.
(Hint: Whenever θM for a given θE exceeds 2π, map it to a value within [0, 2π].
For example, θM = 3π should be mapped to π, θM = 8π should be mapped to
2π, and so on)

(b) Numerically compute θE for orbital parameters T = 6s and e = 0.8. You can
solve it for discretized time as in question 4(a). Your task is to obtain the
solution (within tolerance 10−9) in the least number of iterations possible. Is
the root θE unique for the given orbital parameters?

(c) How does the computational time for determining θE varies with different
values of ϵ∗ in the range [0.01, 0.00001]? Why do you think this happens?

(d) Compare the solution for (r, θ) in the presence of a small perturbation ϵ∗ with
the unperturbed case (ϵ∗ = 0) for different times (t) in tabular form. Use the
parameters of question 5(b) and take a = 2 km. Animate both the trajectories.
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2 Project part - II

2.1 Introduction: Optimal resource consumption for satellite
launch

Satellites are launched into orbit using multi-stage rockets. Most modern rockets utilize
three stages during their ascent into space. The first stage initially propels the rocket
until its fuel is depleted, at which point the stage is jettisoned to reduce the mass of
the rocket. The second and third stages then take over to place the rocket’s payload
(satellite) into orbit around the planet. The first goal in the second part of the project
is to determine the individual masses of the three stages so that the total mass of the
rocket is minimized while ensuring that it reaches the desired velocity.

For a single-stage rocket consuming fuel at a constant rate, the change in velocity
resulting from the acceleration of the rocket is modeled by

∆V = −cr log
(
1− (1− S)Mr

P +Mr

)
, (5)

where Mr is the mass of the rocket engine including initial fuel, P is the mass of the
payload, S is a structural factor determined by the design of the rocket, and cr is the
(constant) speed of exhaust relative to the rocket.

Once the satellite is in a desired orbit, orbital adjustments and station-keeping ma-
neuvers of a satellite requires fuel consumption. Let’s assume that the fuel consumption
F (ω, ζ; t) of a satellite is a function of the angular velocity ω, thrust ζ and time t, de-
scribed by the following equation

F (ω, ζ; t) = a(ω − ω0)
2 + b(ζ − ζ0)

2 + c sin(ωt), (6)

where

1. Quadratic terms a(ω − ω0)
2 and b(ζ − ζ0)

2: These terms ensure that the fuel
consumption increases as the angular velocity ω and thrust ζ deviate from their
optimal values ω0 and ζ0, respectively. The coefficients a and b control how sensitive
the fuel consumption is to changes in ω and ζ.

2. Sinusoidal term c sin(ωt): This term introduces non-linearities to the fuel con-
sumption model due to heterogeneities in space.

We wish to find the optimal angular velocity and thrust that minimizes the fuel con-
sumption at every instant, t, of the satellite’s orbital trajectory. Once these parameters
are known, the robot controlling the satellite can adjust any deviations accordingly so
that the fuel consumption can be minimized while maintaining the satellite’s trajectory
in the desired orbit. It may be noted that the scientific objectives of the satellite does
not depend on the fuel minimization exercise by the robot.
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2.2 Brief overview of optimization techniques

2.2.1 Lagrange multipliers for constrained optimization

Lagrange multipliers are a powerful technique used in optimization problems where the
objective function needs to be minimized (or maximized) subject to one or more con-
straints.
Consider a function f(x, y) that we want to minimize subject to a constraint given by
g(x, y) = c, where c is a constant. The function f(x, y) is called the objective function
and g(x, y) = c is the constraint.

To solve this problem using Lagrange multipliers, we introduce a new variable λ (called
the Lagrange multiplier) and construct the Lagrangian function L(x, y, λ).

L(x, y, λ) = f(x, y) + λ (g(x, y)− c)

Here, the term λ(g(x, y)− c) adds the constraint to the objective function.
To find the critical points, we take the partial derivatives of the Lagrangian function

with respect to x, y, and λ, and set them equal to zero.

∂L
∂x

=
∂f(x, y)

∂x
+ λ

∂g(x, y)

∂x
= 0,

∂L
∂y

=
∂f(x, y)

∂y
+ λ

∂g(x, y)

∂y
= 0,

∂L
∂λ

= g(x, y)− c = 0,

These equations form a system of equations that can be solved simultaneously to find
the values of x, y, and λ.

2.2.2 Gradient descent for minimizing fuel consumption

Gradient descent is an optimization algorithm used to minimize a cost function by it-
eratively moving along the steepest descent path which is the negative gradient of the
function. For the fuel consumption model F (ω, ζ; t) given by Equation 6, the gradient
with respect to the control variables ω and ζ can be computed as

∇F =

(
∂F

∂ω
,
∂F

∂ζ

)
.

The update rules for ω and ζ at each iteration are given by

ω(n+1) = ω(n) − ηω
∂F

∂ω
,

ζ(n+1) = ζ(n) − ηζ
∂F

∂ζ
,

where ηω and ηζ are the learning rates that control the step size.
The objective is to find the values of ω and ζ that minimize F (ω, ζ; t) ensuring optimal

fuel consumption during orbital adjustments. For pseudocode refer A.4 and for further
details refer Hass et al. 2022.
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2.3 Problem statements

Consider a multi-stage rocket intended for launching a satellite of mass Ms into orbit.
The rocket consists of three stages, each with its own mass Mi (for i = 1, 2, 3), where M1

is the mass of the first stage, M2 is the mass of the second stage, and M3 is the mass of
the third stage. Assume that external forces, such as gravity and atmospheric drag, are
negligible during the rocket’s ascent, and that cr and S are constant for each stage.

Initially, the rocket’s first stage has a mass of M1 (excluding the payload), and its
payload consists of an additional combined mass of the second and third stages and
the satellite of mass Ms. The rocket’s second stage has a mass of M2 (excluding the
payload), and its payload consists of an additional combined mass of the third stage, and
the satellite of mass Ms. Thus, the subsequent stages operate similarly after the previous
stage is jettisoned.

1. Derive the final velocity: Using the rocket equation 5, derive the expression for
the final velocity vf achieved after all three stages have been expended. Show that
this velocity is given by

vf = cr

[
log

(
M1 +M2 +M3 +Ms

SM1 +M2 +M3 +Ms

)
+ log

(
M2 +M3 +Ms

SM2 +M3 +Ms

)
+ log

(
M3 +Ms

SM3 +Ms

)]
.

(7)

2. Minimization problem: We aim to minimize the total mass of the rocket stages,
M = M1+M2+M3, subject to the constraint that the final velocity vf as given by
equation 7 is attained. To simplify the minimization problem, define new variables
Ni so that the constraint equation can be expressed as

vf = cr (logN1 + logN2 + logN3) .

Given this, show that

M1 +M2 +M3 +Ms

M2 +M3 +Ms

=
(1− S)N1

1− SN1

,

M2 +M3 +Ms

M3 +Ms

=
(1− S)N2

1− SN2

,

M3 +Ms

Ms

=
(1− S)N3

1− SN3

,

and conclude that

M +Ms

Ms

=
(1− S)3N1N2N3

(1− SN1)(1− SN2)(1− SN3)
.

3. Minimization with Lagrange multipliers: Verify that log
(

M+Ms

Ms

)
is mini-

mized at the same values of M as the original function. Use the method of Lagrange
multipliers to find the expression for Ni where this minimum occurs subject to the
constraint vf = cr (logN1 + logN2 + logN3).
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4. Expression for minimum mass: Derive an expression for the minimum total
mass M of the rocket stages as a function of the desired final velocity vf .

5. Application to orbital insertion: To place a satellite into a low Earth orbit,
approximately 160 kilometers (100 miles) above the Earth’s surface, a final velocity
of 28,000 kilometers per hour (17,500 miles per hour) is required. Consider the
structural coefficient S = 0.2 and the exhaust speed cr = 9, 600 kilometers per hour
(6,000 miles per hour).

(a) Find the minimum total mass M of the rocket stages as a function of the
satellite mass Ms.

(b) Determine the individual masses M1, M2, and M3 of each rocket stage as
functions of Ms (noting that the stages are not of equal size).

6. Fuel consumption extrema:

(a) Find the critical points for the fuel function F (ω, ζ; t) in equation 6. Do critical
points exist for any values of the constants involved in equation 6? Provide
appropriate justification for your answer.

(b) Using the second derivative test, analyze the nature of the critical points found.

7. Gradient descent implementation:

(a) Implement the gradient descent algorithm for t ∈ [0, 2π] (discretized into 10
equally spaced points) to minimize the fuel consumption function F (ω, ζ; t).
Take a = b = ω0 = ζ0 = 1.0 and c = d = 0.5 and consider the allowed values
of ω and ζ in the range [0, 3].

(b) Analyze the effect of varying the learning rates ηω and ηζ on the convergence
of the algorithm and the accuracy of the minima found. What learning rates
did you find best to solve this problem?

(c) How does changing the coefficients a, b, c affect the efficiency of the satellite’s
maneuvers? (you need to show this through appropriate plots and justifica-
tion)
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A Appendix

A.1 Fixed-point method

Input: Function g(x), initial guess x0, tolerance ϵ, maximum iterations Nmax

Output: Approximate solution x
Set x← x0

for n = 1, 2, . . . , Nmax:
xnew ← g(x)
if |xnew − x| < ϵ:

break
x← xnew

return x

A.2 Newton’s method

Input: Function f(x), derivative f ′(x), initial guess x0, tolerance ϵ, maximum
iterations Nmax

Output: Approximate solution x
Set x← x0

for n = 1, 2, . . . , Nmax:
xnew ← x− f(x)

f ′(x)

if |xnew − x| < ϵ:
break

x← xnew

return x

A.3 Secant method

Input: Function f(x), initial guesses x0 and x1, tolerance ϵ, maximum iterations
Nmax

Output: Approximate solution x1

for n = 1, 2, . . . , Nmax:
xnew ← x1 − f(x1)× x1−x0

f(x1)−f(x0)

if |xnew − x1| < ϵ:
break

x0 ← x1

x1 ← xnew

return x1
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A.4 Gradient descent method

Input: Function f(w), gradient ∇f(w), initial guess w0, learning rate α, tolerance
ϵ, maximum iterations Nmax

Output: Optimal w
Set w← w0

for n = 1, 2, . . . , Nmax:
Compute the gradient at w: g← ∇f(w)
Update w: wnew ← w − α · g
if ∥wnew −w∥ < ϵ:

break
Set w← wnew

return w
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