THE CENTRAL LIMIT THEOREM

VIRAJ DSOUZA 10 May 2024 Mathematics of Uncertainty

IN SIMPLE WORDS...

- **REGARDLESS** OF THE POPULATION DISTRIBUTION, AS THE SAMPLE SIZE **INCREASES**,
 - SAMPLE MEAN TENDS TO NORMALLY DISTRIBUTE AROUND THE POPULATION MEAN, AND
 - Sample Standard Deviation shrinks
- UNDERSTANDING THIS EMPIRICALLY (BY SIMULATING RANDOM SAMPLES)

POPULATION VS SAMPLE

A POPULAR ARTICLE CLAIMS:

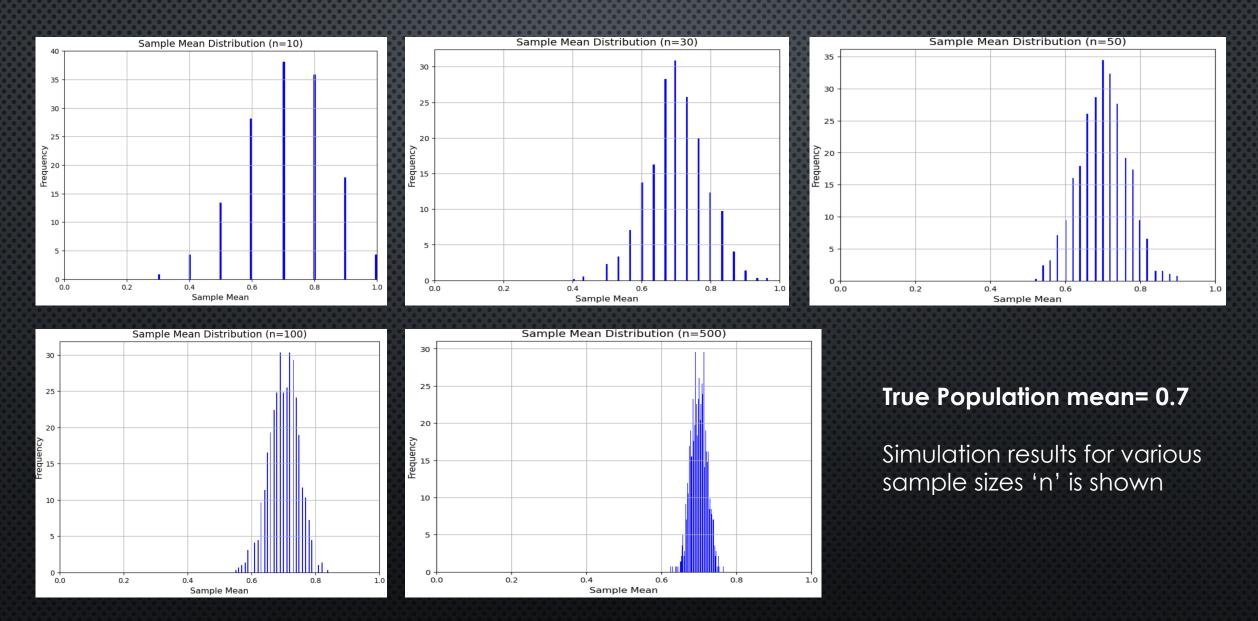
Out of the population of 10 million people who can vote, 70% support party \bm{A} and 30% support party \bm{B}

GIVEN YOU HAVE ACCESS TO THIS POPULATION (BUT LIMITED RESOURCES), HOW WOULD YOU VERIFY THE ABOVE CLAIM?

Random sampling

Estimate the support for party a \rightarrow law of large numbers

RANDOM SAMPLE SIMULATIONS



FROM THE SIMULATIONS...

Variability in Sampling Distribution Decreased as Sample Size Increased Estimate from a Larger Sample size → More Accurate (Low sampling error)

Mean of Sample Distribution Peaked close to the Population mean, for sufficiently large Sample sizes

Thoughtful Data collection \rightarrow Randomizing samples (Minimizes Bias)

In real world, Sampling Distributions are almost Never observed

THE CENTRAL LIMIT THEOREM

Let $(X_1, X_2, ..., X_n)$ be a Random sample of size n' from a distribution with a finite mean (μ) and a Finite variance (σ^2) . If n' is sufficiently large, then $\overline{X} = \frac{X_1 + X_2 + ... + X_n}{n}$ is Approximately a $N\left(\mu, \frac{\sigma^2}{n}\right)$ Normal Distribution

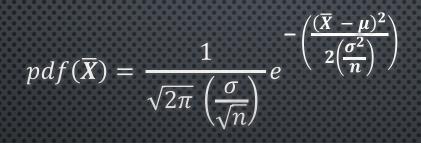
- Samples Must be Independent; $X'_i s$ are Independent Random Variables
- <u>n: Depends on the Population Distribution</u>
- MEAN OF \overline{X} (say $\mu_{\overline{X}}$) tends to μ if CLT conditions hold
- SD OF \overline{X} (say $\sigma_{\overline{X}}$) tends to $\frac{\sigma}{\sqrt{n}}$ (STANDARD ERROR) if CLT conditions hold

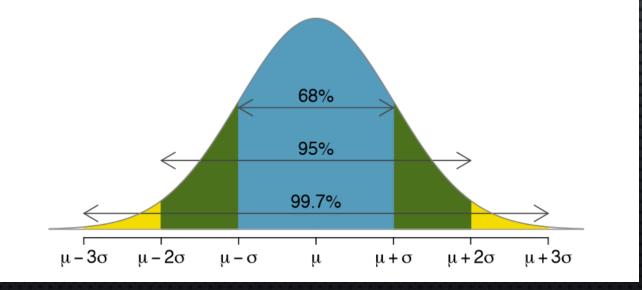
Point Estimates

NORMAL DISTRIBUTION (RECALL)

IF \overline{X} IS A $N\left(\mu, \frac{\sigma^2}{n}\right)$ DISTRIBUTION. THE PDF OF \overline{X} :

 $N(\mu, \sigma^2)$:





$$P\left(\mu-1.96\left(\frac{\sigma}{\sqrt{n}}\right) \le \overline{X} \le \mu+1.96\left(\frac{\sigma}{\sqrt{n}}\right)\right) \approx 0.95$$

Z-score

THE CLT IS VERY POWERFUL - QUITE LITERALLY

- IF CLT CONDITIONS HOLD, SAMPLING DISTRIBUTION (OF \overline{X}) Is $N\left(\mu, \frac{\sigma^2}{n}\right)$
- Population Mean can Be **estimated** using sample mean $(\mu_{\bar{X}})$, but There is some $\sigma_{\bar{X}}$
 - How confident are you about the estimate based on samples You collected From the Population ?
 - **Example:** We are 95% of the times confident that the Population mean is between

CLT ILLUSTRATES LAW OF LARGE NUMBERS (LLN)

Interval Estimate

 $(\mu - 1.96 \sigma_{\overline{X}}, \ \mu + 1.96 \sigma_{\overline{X}})$

LONG HISTORY SHORT

- CLT IS JUST A POWERFUL EXTENSION OF LLN.
- LLN: CARDANO (16th Cent.) → Bernoulli, De Moivre(18th Cent.) → Poisson (19th Cent.) → Markov, Chebyshev, Kolmogorov, Borel... (Late 19th and 20th Cent.)
- MONTE CARLO METHODS (1940)

CAREFUL: GAMBLER'S FALLACY

INAPPROPRIATE USE OF LLN/CLT MAY LEAD TO SERIOUS TROUBLE

CLT IN ACTION

- Political Polling, Product-Market Fit \rightarrow Public opinion surveys
- CLINICAL TRIALS
- FORECASTING WEATHER, STOCK MARKET
- Physics: Measurement errors, Diffusion equation (Recall: Random Walk)...

REFERENCES

- OPENINTRO STATISTICS. AVAILABLE
- HOGG, R.V., TANIS, E. AND ZIMMERMAN, D. (2015) PROBABILITY AND STATISTICAL INFERENCE. 9TH EDITION, PEARSON, UPPER SADDLE RIVER.

For CLT APPLICATIONS: INVESTOPED