Time Series Models: introductory concepts

Thapar Institute of Engineering & Technology, Patiala

Time series data

Consider a time series data: $\{y_t\}_{t \ge 0} = \{y_0, y_1, y_2, ..., y_T, ...\}$

eg. amount of rainfall in a year, here t can represent the month, and y_t can represent average monthly rainfall;

eg. Gaussian white noise: $y_t = \varepsilon_t$ where $\varepsilon_t \sim N(0, \sigma^2)$ are independent random variables.

Properties of white noise

$$\bigcirc E[\varepsilon_t] = 0,$$

2
$$E[\varepsilon_t^2] = \sigma^2$$
, and

Realizations

First realization: $\{y_l^{(1)}\}_{l \ge 0}$ Second realization: $\{y_l^{(2)}\}_{l \ge 0}$ Third realization: $\{y_l^{(3)}\}_{l \ge 0}$

$$\xrightarrow{\text{sampled at t}} \{ \boldsymbol{y}_t^{(1)}, \boldsymbol{y}_t^{(2)}, \boldsymbol{y}_t^{(3)}, ..., \boldsymbol{y}_t^{(l)} \}$$

 I^{th} realization: $\{y_{I}^{(1)}\}_{I\geq 0}$

Thus we construct a sample of *I* realizations of random variable Y_t

Covariance and Auto-covariance

<u>Variance</u>: $\gamma_{0t} := E(Y_t - \mu_t)^2$

<u>Auto-covariance</u>: $\gamma_{jt} := E(Y_t - \mu_t)(Y_{t-j} - \mu_{t-j})$

This is similar to $Cov(X, Y) = E(X - \mu_X)(Y - \mu_Y)$.

Stationarity

We will restrict our discussion to weak stationarity.

)
$$E[Y_t] = \mu$$
 (independent of time),

2)
$$E(Y_t - \mu_t)(Y_{t-j} - \mu_{t-j}) = \gamma_j$$
 (independent of time), and

Symmetry: $\gamma_j = \gamma_{-j}$ (obvious from definition).

Ergodicity

<u>Definition</u>: A time series process is <u>ergodic</u> when time averages of the random entries of the sample can be replaced by their ensemble averages.

i.e.
$$\bar{y} \xrightarrow{\rho} E[Y_t]$$
 where $\bar{y} := \frac{1}{T} \sum_{t=1}^T y_t^{(1)}$.

The above holds when $\gamma_j \to 0$ sufficiently fast as $j \to \infty$ iff $\sum_{j \ge 0} |\gamma_j| < \infty$.